Resonant Strain Sensor

K. E. Wojciechowski and Bernhard E. Boser

Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Outline

- Strain sensor
- Resonant force sensing
- Oscillator analysis
 - Phase and frequency noise
 - Design for minimum noise
- Oscillator sustaining circuit
- Frequency-to-digital conversion
- Conclusions

Strain Sensor Applications

Strain Sensor Specifications

Strain:
$$\varepsilon = \frac{\Delta L_g}{L_g}$$

• Resolution:
$$0.1 \ \mu\epsilon$$

• Full-scale: $\pm 1000 \ \mu\epsilon$
• Bandwidth: $10 \ \text{kHz}$
• Gauge length: $\leq 200 \ \mu\text{m}$
 $\Delta L_g = \epsilon \times L_g$
 $= 0.1 \ \mu \times 200 \ \mu\text{m}$
 $= 20 \ \text{pm}$
 $= 0.2 \times 10^{-10} \ \text{m}$

Resonant Strain Sensor

Frequency Modulation

Phase Noise

Frequency Noise

Total Noise

Frequency Noise $S_f(\Delta f) = 2 \times (\Delta f)^2 \times L(\Delta f)$ $S_{fT} = 2\int_{a}^{B} S_{f}(\Delta f) d\Delta f$

 $=\frac{2}{3}B^{3}L_{far}$ $L_{far} \leq 1.5 \times \frac{S_{fT}}{R^3}$ $=1.5 \times \frac{(3.8 \text{Hz})^2}{2 \times (10 \text{kHz})^2} = -110 \text{dBc/Hz}$

PhaseNoise

Prior Art MEMS Resonators

[T. Roessig, 1997]

- Vacuum encapsulation
- Integrated electronics
- Much worse than quartz why?

MEMS Oscillator Noise

	Roessig 1997	Nguyen 1999	Seshia 2002	Seth 2004	Goal (This Work)
Noise L _{far} [dBc/Hz]	-70	-70	-75	-83	< -110
Vacuum	~	~	×	~	×
Monolithic	~	~	×	×	×
Frequency, f _o	175 kHz	16.5 kHz	145 kHz	57 kHz	217 kHz
Motional Res., R _x	?	3.8 MΩ	?	2.5 MΩ	
Q	17000	51000	10000	14000	
Amplitude V _{Drive}	?	~ 34 mV	~36 mV	5.3 mV	

Need oscillator with 1000x lower noise than prior art!

Low-Noise Oscillator Design

Constrained by gap, nonlinearity

What is the noise power?

Electro-Mechanical Oscillator

 $F_{ext} = kx + b\dot{x} + m\ddot{x}$

Electro-Mechanical Oscillator

$$F_{ext} = kx + b\dot{x} + m\ddot{x}$$

Oscillator Sustaining Circuit Unity-gain feedback at resonance I_1 V_1 Ш Lx R_v Cx

Oscillator Sustaining Circuit

Oscillator Sustaining Circuit

Oscillator Noise Voltage

Phase Noise

$$L_{near} = \frac{4k_{B}T_{r}}{k_{B}\overline{x^{2}}\omega_{o}} \frac{1}{Q} \left(\frac{f_{o}}{2\Delta f}\right)^{2}$$

$$L_{far} = \frac{2k_B T_r}{k_B \overline{x^2} \omega_o} Q$$

- → tradeoff (for high bandwidth optimal <u>Q < 100</u>)
- \rightarrow for given mechanical amplitude

Phase Noise Floor – Interpretation

MEMS versus Quartz Resonators

- 1. Maximum power limited in "small" MEMS oscillators
 - Increasing resonant frequency helps
 - Bulk acoustic waves store more energy
- 2. High motional impedance R_x
 - Loaded Q ≈ intrinsic Q

Prototype DETF Strain Sensor

sustaining circuit

Strain Actuator

Gauge Length (L _{beam})	200 μm
Width, (W _{beam})	6 µm
<i>Measured Resonant freq. (f_r)</i>	217kHz
Measured Q (atmospheric pressure)	370
Measured sensitivity	38Hz/μ ε

Double-ended tuning fork (DETF).

Problem with Low Q Operation

- No vacuum packaging (Q ~ 370)
- Large feature spacing ~3μm gaps
- Modest $V_{\text{bias}} = 30V$
- No integration: PCB parasitics

Effect of C_{ft} on Sustaining Circuit

Time-Variant Sustaining Circuit

- Undesired I_{Cft} decays quickly
- Sinusoidal I_{DETF} decays *slowly*
- Zero crossings set by DETF, not C_{ft}

Time-Variant Oscillator (TVO)

TVO Measurements

Measured TVO Phase Noise

- Resolution
 - $-20-n\epsilon$ in 10kHz
 - 200-pε/rt-Hz
 - 40-fm/rt-Hz
- Test equipment: Agilent 5501A

MEMS Oscillator Noise

	Roessig 1997	Nguyen 1999	Seshia 2002	Seth 2004	This Work 2004
Noise L _{far} [dBc/Hz]	-70	-70	-75	-83	-120
Vacuum	>	×	>	~	×
Monolithic	×	~	×	×	×
Frequency, f _o	175 kHz	16.5 kHz	145 kHz	57 kHz	217 kHz
Motional Res., R _x	?	3.8 MΩ	?	2.5 M Ω	18 M Ω
Q	17000	51000	10000	14000	370
Amplitude V _{Drive}	?	~ 34 mV	~36 mV	5.3 mV	10 V

Frequency-to-Digital Conversion

Methods:

- Digital demodulation
- Analog PLL followed by ADC
- ΣΔ**PLL**

Digital Demodulation

ADC Specs:

- 17 Bit A/D required
- Sample Rate $f_s \ge 3f_r = 651 \text{ kHz}$
- Bandwidth $\geq 2 \times (\text{Signal BW} + \text{Max change in } f_r) = 96 \text{ kHz}$

PLL Demodulator

- Loop filter Bandwidth \geq Signal Bandwidth (10kHz)
- VCO phase noise better than input phase noise (-120 dBc).
- Scale factor (K_{vco}) temp/supply dependence can be problem
- Needs extra ADC

Solution: $\Sigma \Delta PLL^*$ Approach

- Performs demodulation and A/D conversion in same step
- Low complexity analog filter and A/D (4 bits) for 15 bit resolution
- Linearity and phase noise set by crystal reference
- Loop filter Bandwidth = Signal Bandwidth (10kHz)

Frequency-to-Digital Converter

Analog Filter

Measured Strain Resolution

Test with Strain Actuator

Conclusions

- High resonator Q translates into
 - Low signal power delivered to resonator
 - High phase noise
 - Lowest phase noise is achieved for moderate Q
- High motional resistance, R_x
 - Typical for MEMS oscillators, exacerbated in low Q designs
 - Incompatible with conventional oscillator circuits
 - Overcome with time-variant sustaining circuit
- Strain sensor performance
 - $-20-n\epsilon$ (rms) resolution in 10kHz
 - 200-μm gauge length
 - 40-fm/rt-Hz displacement resolution

Acknowledgements

- BSAC strain sensor research team under Professor Albert Pisano
- Wayne Denny and Graham Mcdearmon of Timken Company
- Bosch RTC for help with testing
- Bosch for fabrication
- Vladimir Petkov, Baris Cagdaser, Manu Seth
- Army Research Office grant # 19-02-1-0198

